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Abstract
We find the possibility of weak universality of spin-glass phase transitions
in three-dimensional ±J models. The Ising, the XY and the Heisenberg
models seem to undergo finite-temperature phase transitions with a ratio
of the critical exponents γ /ν ∼ 2.4. Evaluated critical exponents may
explain the corresponding experimental results. The analyses are based upon
nonequilibrium relaxation from a paramagnetic state and finite-time scaling.

PACS numbers: 75.10.Nr, 64.60.−i

1. Introduction

The spin-glass (SG) phenomenon has been attracting great interest both theoretically and
experimentally [1]. Applications now cover a wide range of interdisciplinary fields of statistical
physics and informational physics, as treated in this special issue. However, many subjects
are not well understood, in spite of efforts made over almost 30 years. One of these subjects is
whether or not the SG transition of real materials can be explained by a simple random-bond
spin model.

Spins of many SG materials are well approximated by the Heisenberg spins. The simplest
theoretical model is the Heisenberg model with random nearest-neighbour interactions.
However, numerical studies suggest that there is no finite-temperature SG transition in this
model [2, 3]. Kawamura [4, 5] proposed the chirality mechanism in order to solve this
discrepancy. The chiral-glass (CG) transition occurs without the SG order. A small but finite
random anisotropy in the real materials mixes the chirality degrees of freedom and the spin
degrees of freedom. This anisotropy effect induces the SG transition observed in the real
materials. The scenario is based upon results that the SG transition does not occur in the
isotropic model. However, Matsubara et al [6–8] recalculated the domain-wall excess energy
and the SG susceptibility, from which they suggested that the finite-temperature SG transition
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Figure 1. A schematic diagram to approach the thermodynamic limit.

does possibly occur. Methods are quite similar to the previous ones [2, 3]. Subtle differences
in the analyses of the obtained data drew opposite conclusions.

The spin-glass problem is one of the most difficult subjects in computational physics.
It can be a tough bench-mark test for a new numerical method. It may be applied to other
complex systems, if successful in the spin-glass investigations. The difficulty is caused by
serious slow dynamics. It requires many Monte Carlo steps to reach the equilibrium states.
An observed quantity at each step has a strong correlation even after the equilibration. The
system sizes which can be treated in the simulations are accordingly limited to very small ones,
e.g., mostly of linear size 20 or less in three dimensions. Size effects are generally stronger
in the continuous spin systems because the spins are soft and the boundary effect propagates
faster. Frustration and randomness also yield a considerable size effect. The system sizes
treated previously in the studies of the Heisenberg SG models are too small to extrapolate to
the thermodynamic limit. This is our motivation for reexamining the SG transition using the
nonequilibrium relaxation (NER) method [9–14].

The difficulty mentioned above can be overcome by using the NER method. This method
takes the opposite approach to the thermodynamic limit. Figure 1 schematically shows a
comparison between the conventional equilibrium simulational method and the NER method.
In the conventional method one takes the infinite time limit first by achieving the equilibrium
states at finite sizes. The thermodynamic limit is taken by the finite-size scaling analysis of the
obtained data. In the NER method we take the infinite-size limit first by dealing with a very
large system within a finite time range before the finite-size effect appears. Then, the finite-
time scaling analysis [15, 16] is performed to obtain the thermodynamic properties. The cost
of a simulation is of the same order of Ld+z for both methods. However, the coefficient factor
in the NER method is much smaller than that in the conventional method. An observation time
length in the NER method is sufficient if we can observe the beginning of a final relaxation
to the equilibrium states (equilibrium relaxation). On the other hand, it is necessary to wait
until the end of the equilibrium relaxation in the conventional method. The latter time scale is
typically 10–102 times longer than the former one in the spin-glass models. (For example, χsg

of L = 17 in figure 4(a) or χsg at T = 0.56 in figure 6(a).) Therefore, the NER method has
an advantage over the conventional method by this factor. We use the residual computational
time to enlarge the system size and to increase statistical accuracy.

By using the NER method we have made it clear that the SG transition occurs in the
Heisenberg model at the same finite temperature as the CG transition occurs [17]. The
estimated critical exponent γ is consistent with the corresponding experimental result [18].
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The chirality mechanism is not necessary to explain the spin-glass experiments since the
chirality trivially freezes if the spin freezes. However, one may question the use and the
validity of the NER method in the spin-glass phenomenon. Therefore, we have corroborated
our method by studying the Ising SG model. Many numerical investigations [19–23] yield
consistent results on the existence of the SG transition, the critical temperature and the critical
exponents. They are also consistent with the corresponding experimental results [24]. The
NER method yields consistent results for a small number of simulations as discussed in
section 3.

In this procedure we have found a possibility of a weak universality: a critical exponent
divided by ν, for example γ /ν, is common among models in a weak universality class. The
ratio of the critical exponents γ /zν appearing in finite-time scaling analysis is found to be
consistent between the Heisenberg model and the Ising model. We have verified that a ratio
γ /ν is also consistent by evaluating the dynamic exponent z alone. The analysis is expanded
to the XY SG model and the value is also found to be consistent. These findings are quite
surprising. We must reconsider the role of the spin dimensions and the distribution of the
randomness in the SG phase transition.

This paper is organized as follows. In section 2 the model and the method are explained.
Descriptions of the procedure of the NER method and the finite-time scaling are given. In
section 3 the results on the Ising model, the Heisenberg model and the XY model are shown.
Then, the possibility of a weak universality is discussed. Section 4 is devoted to a summary.

2. Model and method—nonequilibrium relaxation

The model treated in this paper is the nearest-neighbour ±J random-bond model,

H =
∑
〈i,j〉

JijSi · Sj . (1)

The linear size of a lattice is denoted by L. Skewed periodic boundary conditions are imposed,
i.e. total numbers of spins N = L × L × (L + 1). An interaction Jij takes two values of +J

and −J with the same probability. The temperature T is scaled by J .
Spins are updated by a single-spin-flip algorithm. The Metropolis (M) update is used in

all models, whereas the heat-bath (H) update [3] is used in the Heisenberg model. Physical
quantities observed in our simulations are the SG susceptibility χsg, the CG susceptibility χcg

and the Binder parameter with regard to the spin-glass transition gsg. These quantities are
calculated through the overlap between real replicas.

First, we rewrite the thermal average by an arithmetic mean over thermally equilibrium
ensembles labelled by α as

〈Si ·Sj 〉 = 1

m

m∑
α=1

S(α)
i · S(α)

j = 1

m

m∑
α=1

x,y,z∑
µ

S
(α)
i,µS

(α)
j,µ. (2)

The bracket 〈· · ·〉 denotes the thermal average and m denotes the number of ensembles. The
index µ stands for three components of spins: x, y and z. This expression is substituted into
the definition of the SG susceptibility:

χsg = 1

N

∑
i,j

[〈Si · Sj 〉2]c = N


 1

m2

m∑
α,β

x,y,z∑
µ,ν

(
qαβ

µ,ν

)2




c

(3)

where qαβ
µ,ν ≡ (1/N)

∑
i S

(α)
i,µS

(β)

i,ν is an overlap between the µ component of a spin i on an

ensemble α: S
(α)
i,µ and the ν component of the spin on an ensemble β: S

(β)

i,ν . The bracket [· · ·]c

denotes the configurational average.
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Figure 2. A schematic flow diagram of our simulation. Solid bonds and broken bonds in the lattice
depict ferromagnetic bonds and antiferromagnetic bonds.

Here, we introduce the following real replicas. Each real replica takes the same random
bond configuration and the different paramagnetic initial spin state. They are updated in
parallel with different random number sequences. This procedure corresponds to quenching
from an infinite temperature. The thermal ensembles are realized by these real replicas
which approach different equilibrium states. Therefore, we replace the thermal average by
the average over these real replicas as equation (2). The indices α and β now represent real
replicas. We do not take into consideration a constant term which arises from the overlap
between the same replica α = β and use the following expressions in the simulations:

χsg = N


 2

m(m − 1)

m∑
α>β

x,y,z∑
µ,ν

(
qαβ

µ,ν

)2




c

(4)

χcg = 1

3N


 2

m(m − 1)

m∑
α>β


∑

i,φ

C
(α)
i,φ C

(β)

i,φ




2



c

(5)

gsg = 1

2


A − B

∑
µ,ν,δ,ρ

[
2

m(m−1)

∑m
α>β

(
qαβ

µ,ν

)2(
q

αβ

δ,ρ

)2]
c(∑

µ,ν

[
2

m(m−1)

∑m
α>β

(
q

αβ
µ,ν

)2]
c

)2


 . (6)

The number of replicas m controls the precision of the thermal average. It is better to take a
large value. We prepare eight or nine replicas for each bond configuration in this paper. The
scalar chirality is defined by three neighbouring spins as C

(α)
i,φ = S(α)

i+êφ
· (

S(α)
i ×S(α)

i−êφ

)
, where

êφ denotes a unit lattice vector along the φ axis. In the XY model we calculate the vector
chirality, which is defined by C

(α)
i,φ = (1/2

√
2)

(
JijS

(α)
i × S(α)

j + JjkS
(α)
j × S(α)

k + JklS
(α)
k ×

S(α)
l + JliS

(α)
l × S(α)

i

)∣∣
z
. Indices i, j, k, l denote four sites forming a square plaquette in the

φ direction from the i site. Constants in a definition of gsg are A = 3, B = 1 for the Ising
model, A = 6, B = 4 for the XY model and A = 11, B = 9 for the Heisenberg model.

Figure 2 shows a schematic diagram of the simulation procedure. We calculate a physical
quantity at each time step t and obtain a relaxation function. Another simulation starts by
changing a random bond configuration, initial spin states and a random number sequence.
Then, another relaxation function is obtained. Finally, we take an average of data at each step
over these different Monte Carlo runs. It should be noted that the average is over independent
data. It guarantees the absence of systematic error due to correlations of the observed quantity,
which we usually encounter in the conventional Monte Carlo time average. The obtained raw
relaxation function is utilized by the following finite-time scaling analysis.
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Table 1. Numbers of bond configurations to obtain data for χsg and gsg at Tsg in this paper. Indices
(M) and (H) in the Heisenberg model denote update algorithms: (M) for the Metropolis and (H)
for the heat bath. Arrows mean that the number is same as to the right.

Step

Model Size 103 104 5 × 104 105 5 × 105 106 4 × 106

χsg Ising 49 → → → 393 → → 88
XY 39 → → → 5 246 120
Heisenberg(M) 59 → → → → → 104
Heisenberg(H) 89 → 58 → 22

gsg Ising 39 255 480 85 480 18 576 12 626 → 1830 172
XY 19 → → → 7 803
Heisenberg(H) 39 43 114 18 316 7 038

The most important point in the NER method is to exclude finite-size effects from the
raw relaxation function. The method is based upon taking the infinite-size limit first. If a
relaxation function includes a finite-size effect, it exhibits converging behaviour because every
finite system has a definite equilibrium state. This behaviour misleads us into thinking that the
temperature is in the paramagnetic phase even though it is the critical temperature. Therefore,
the critical temperature is always underestimated if the size is insufficient. We check the size
effect by changing the lattice sizes and always confirm a time range in which the size can be
considered as infinity.

The SG susceptibility is expected to diverge at the critical temperature (Tsg) as χsg(t) ∼
tγ /zν [13]. We obtain Tsg, γ and zν by the finite-time scaling analysis on the relaxation
functions of χsg(t) in the paramagnetic phase [17]. Since the initial spin configuration is
completely random, χsg(t = 0) ∼ 1. We start a set of simulations at a temperature T that
is obviously in the paramagnetic phase. The relaxation function χsg(t) at this temperature
increases with t but soon converges to a finite value. As the temperature is lowered to approach
the critical temperature, the relaxation function tends to show diverging behaviour. Since the
temperature is still in the paramagnetic phase, the relaxation finally converges to a finite value
after a correlation time τ(T ). The spin-glass correlation increases with time and reaches the
correlation length ξ(T ) after this correlation time. Two quantities relate to each other by z as
τ(T ) ∼ ξz(T ). Therefore, the correlation time should diverge at Tsg as

τ(T ) ∼ (T − Tsg)
−zν . (7)

The correlation time can be estimated by scaling the raw relaxation function. We obtain γ /zν

and τ(T ) so that the scaled functions χsg(t)t
−γ /zν at all temperatures plotted against t/τ (T )

fall onto a single curve. Then, the critical temperature and the exponent zν are estimated
by the least-squares fitting with equation (7). Since a ratio γ /zν is already estimated by the
scaling, γ is obtained.

The NER of the Binder parameter gsg(t) is calculated at the obtained Tsg. Since quantity
is related to the fourth-order cumulant, many bond samples are necessary to obtain meaningful
data. The number of bond configurations to obtain the results in this paper is summarized
in table 1. The Binder parameter is expected to diverge at Tsg as gsg(t) × Ld ∼ td/z [14],
by which z is independently obtained. Then, ν is estimated from a value of zν obtained by
the τ -fitting explained above. All exponents are now estimated by the scaling relation. It is
possible to compare the critical exponents with the experimental results.
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Figure 3. (a) The NER of χsg of the Ising model at high temperatures. (b) The finite-time scaling
plot for a choice of γ /zν = 0.39. We obtain τ(T ) and γ /zν so that this scaling plot is good. The
scaling is also possible for γ /zν = 0.38–0.40. (c) The least-squares fitting of τ(T ) supposing
τ(T ) ∝ |T − Tsg|−zν .

The last procedure of our method is to corroborate the results by observing the NER of
χsg at the obtained Tsg. It should diverge as tγ /zν with the same exponent as obtained by
finite-time scaling. If the exponents are inconsistent, the scaling analysis is misled by an
insufficient time range or by the finite-size effect. In the Ising model we perform another
check at Tsg by observing the NER of the distribution function of the replica overlap, P(q, t).
The finite-time scaling plot of P(q, t) should ride on a single scaling function with the same
exponent obtained by finite-time scaling of χsg. This is a direct interpretation of the finite-size
scaling of P(q,L) [20] by t ∝ Lz.

3. Results

Numbers of bond configurations to obtain data at the critical temperature are summarized in
table 1. The numbers at other temperatures are mostly of the same order. For each bond
configuration, we prepared eight replicas for the XY and the Heisenberg model and nine
replicas for the Ising model.

3.1. Ising model

Figure 3 shows an analysis to determine the critical temperature and the exponent. The
simulation is performed just to check that our method gives results consistent with previous
investigations [19–23]. Therefore, the system size is very small (L = 19) and the time range
is very short. Finite-size effects are found to appear for t > 5000 by comparing with results
for L = 29. Only data before this time are used in the scaling analysis. Figure 3(b) is an
example of finite-time scaling. A choice of γ /zν is possible for γ /zν = 0.38–0.40. A set
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Table 2. A list of the critical temperatures and exponents zν obtained by the finite-time scaling
analysis in the Ising model. The ratio of exponents γ /zν denotes the possible value in the finite-time
scaling. The least-squares fitting errors are denoted by χ2.

γ /zν Tsg zν γ χ2

0.400 1.05 12.63(18) 5.1(1) 1.40
0.395 1.13 10.07(37) 4.0(2) 0.66
0.390 1.20 8.46(28) 3.3(1) 0.54
0.385 1.22 8.67(9) 3.3(0) 1.49
0.380 1.21 9.82(9) 3.7(0) 1.84

of correlation times at each temperature is estimated for each choice of this exponent. Then,
the critical temperature is obtained as summarized in table 2. As the exponent increases, Tsg

decreases. We ignore a result of γ /zν = 0.400 which deviates a lot from the others. Our
estimates are

Tsg = 1.17(4) γ /zν = 0.3875(75) zν = 9.3(12) γ = 3.7(5). (8)

The results of the finite-time scaling analysis are checked by the raw NER data at the
obtained critical temperature. Figure 4(a) shows relaxation data of χsg and gsg × Ld . The SG
susceptibility diverges algebraically with an exponent γ /zν = 0.38 that is consistent with the
scaling result γ /zν = 0.3875(75). The critical relaxation process begins around t ∼ 100 and
seems to continue to infinity. The Binder parameter also shows diverging behaviour with td/z,
from which we obtain the dynamic exponent z = 6.2(2). Then, an exponent ν is estimated
as ν = 1.5(3). The ratio of the critical exponents γ /ν = 2.4(1). The obtained results are
consistent with previous numerical investigations [19–23] and the corresponding experimental
results [24] as summarized in table 3. Since the lattice size and the time range are insufficient,
the final numerical results have large error bars. As discussed in the previous section, the
critical temperature may be underestimated by using a small lattice. We plan to estimate them
with high accuracy by large scale NER analyses.

The time evolution of the distribution function of the overlap P(q, t) at T = Tsg = 1.17
is shown in figure 4(b). The system size L = 17. It exhibits a single Gaussian form with a
peak at q = 0 before the size effect of χsg appears at t = 105 as shown in figure 4(a). As
time increases, the width of the distribution grows in accordance with the divergence of the
spin-glass susceptibility. It is possible to scale P(q, t)/tγ /2zν plotted versus qtγ/2zν for various
time steps from t = 10 to t = 104 (figure 4(c)). The critical exponent γ /zν is also consistent
with the finite-time scaling of χsg. The scaled data deviate a little for t = 10 because the time
is just before the relaxation of χsg reaches the critical relaxation region as shown in figure 4(a).
The distribution changes its shape to having two peaks at ±qeq after the finite-size effect
appears. The shape is flat at this crossover time.

It is found that the NER function knows the critical phenomenon from its very early time
steps: t = 10–100. The NER method is now clearly shown to be applicable to the spin-glass
phenomenon.

3.2. Heisenberg model

We apply the same analysis performed in the Ising model to the Heisenberg model. Finite-
time scaling results have already been shown briefly in [17] and the detailed analysis will be
reported elsewhere. The system size is L = 59 and the time scale is 70 000 Monte Carlo steps.
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Figure 4. (a) The NER of χsg and gsg × Ld of the Ising model at Tsg = 1.17. Two lines, tγ /zν

with γ /zν = 0.38 and td/z with z = 6.2, are guides for the eyes. (b) The NER of the distribution
function P(q, t) at Tsg for L = 17. The shape changes from single peaked to double peaked
when the size effect of χsg appears at t = 105. (c) The finite-time scaling plot of P(q, t). (d ) A
three-dimensional plot of P(q, t).

Table 3. Estimates of Tsg, γ , ν, γ /ν and z in the ±J models in three dimensions.

Tsg γ ν γ /ν z

Ising SG
Present work 1.17(4) 3.6(6) 1.5(3) 2.4(1) 6.2(2)

Reference [21] 1.11(4) 4.0(8) 1.7(4) 2.35(5)
Reference [23] 1.195(15) 2.95(30) 1.35(10) 2.225(25) 5.65(15)
Experiment [24] 4.0(3) ∼1.7 ∼2.4

Heisenberg SG
Present work 0.20(2) 1.9(5) 0.8(2) 2.3(3) 6.2(5)

Reference [8] 0.18(1) 2.0(2) 0.97(5) 2.1(1)
Experiment [18] 2.3(4) 1.25(25) 2.0(7)

XY SG
Present work 0.43(3) 2.4(2) 6.8(5)

Typical numbers of bond configurations are same as given in table 1. The finite-time scaling
results are

Tsg = 0.20(2) γ /zν = 0.39(5) zν = 4.8(10) γ = 1.9(5). (9)

These results are checked by the raw NER at T = 0.21 as shown in figure 5. The SG
susceptibility diverges algebraically with an exponent γ /zν = 0.38, which is consistent with
the result of finite-time scaling. We performed simulations of both Metropolis update and
heat-bath update. The Metropolis result denoted by (M) and the heat-bath result denoted by
(H) exhibit the same critical behaviour, while the amplitudes are different by a factor of 3.5.
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Figure 5. The NER of χsg and gsg × Ld of the Heisenberg model at Tsg = 0.21. Lattice sizes are
L = 39 for gsg × Ld , L = 89 for χsg(H) and L = 59 for χsg(M). Indices (H) and (M) denote the
heat-bath update and the Metropolis update, respectively. Lines, tγ /zν with γ /zν = 0.38 and td/z

with z = 6.2, are guides for the eyes.

The NER behaviour is independent of the update algorithm. The consistency supports the
criticality of the SG order at this temperature. It is noted that the critical divergence begins at
a very early time: t ∼ 100.

The Binder parameter exhibits a critical divergence td/z with z = 6.2(5). The value
is consistent with that in the Ising model. Since zν is obtained by finite-time scaling, ν is
estimated as ν = 0.8(2). The ratio of the critical exponent γ /ν = 2.3(3). The results are
compared with an experimental result [18] in table 3. They are not inconsistent.

3.3. XY model

It has been considered that there is no SG transition in this model [25, 26]. Only the CG
transition with respect to the vector chirality is considered to occur [27–29]. However, the
possibility of a SG transition has recently been identified by several investigations [30–32].
We applied the NER analysis to this model and our result supports the latter conclusion: the
SG transition occurs.

Our finite-time scaling analysis on the XY model is not yet conclusive with regard
to whether the SG transition and the CG transition occur at the same temperature or not.
The system size (L= 39), Monte Carlo steps (105) and the temperature range used in the
scaling analysis are insufficient to extract a conclusion. However, as we increase the size and
the number of steps, both critical temperatures seem to approach each other: Tsg increases
from low and Tcg decreases from high. Therefore, we consider that both transitions occur
simultaneously. Investigations are now being carried out and the details will be reported
elsewhere. What has now been made clear is that both transitions occur in a temperature range
of 0.4 < T < 0.46. In this paper we do not examine the issue of simultaneous transition but
focus on the existence of the SG transition.

Figure 6(a) shows raw NER plots of χsg and χcg near and above the critical temperature.
There is no difference in χsg between T = 0.43 and T = 0.46 within the present time steps.
They exhibit a critical divergence with the same exponent and amplitude. The SG transition
is considered to occur near T = 0.43. From the slope we obtain an exponent γ /zν = 0.35.
Note that this value is a little smaller than that of the Ising model and the Heisenberg model
(γ /zν ∼ 0.38). The NER of the Binder parameter is shown in figure 6(b). It exhibits a critical
divergence with an exponent d/z with z = 6.8(5), which is also a little larger than that of the
other models. However, we obtain the ratio of the critical exponents γ /ν = 2.4(2), which is
consistent with the other models.
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Figure 6. (a) The NER of χsg in the XY model above the critical temperature Tsg ∼ 0.43. Lattice
size is L = 39. The line tγ /zν with γ /zν = 0.35 is a guide for the eyes. (b) The NER of the
Binder parameter multiplied by Ld . The line td/z with z = 6.8 is a guide for the eyes.
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Figure 7. (a) NER plots of the χsg at Tsg. Correction-to-scaling fittings are depicted by bold lines
with γ /ν = 2.356, w = 3, z = 6.2 for the Ising/Heisenberg model and z = 6.8 for the XY model.
NER functions except the XY model are indistinguishable. The data of the Heisenberg model with
the Metropolis update are multiplied by 3.5. (b) NER plots of the Binder parameter multiplied
by Ld . The relaxation function of the Ising model multiplied by 2.2 coincides with that of the
Heisenberg model with the heat-bath update.

3.4. Weak universality

The SG transition occurs in all models as shown in the preceding subsections. The ratio of
the critical exponents γ /ν takes a common value around 2.4. Therefore, there is a possibility
of weak universality among these transitions. Not only the value of γ /ν but also the NER
functions themselves suggest that the transitions are qualitatively equivalent.

Figure 7(a) shows the NER functions of χsg at the critical temperature for all the models
treated in this paper. The data of the Heisenberg model with the Metropolis update are
multiplied by a factor 3.5 in order to compare with the result of the Ising model and that
of the Heisenberg model with the heat-bath update. These three NER functions are not
distinguishable. If we take into account a correction-to-scaling term, the relaxation functions
can be fitted from the first few steps (bold lines in figure 7(a)) by an expression [23]:

Atγ/zν[1 − Bt−w/z]. (10)

Here, the exponents of the leading term are set γ /ν = 2.356 and z = 6.2. The correction-to-
scaling exponent w = 3. Coefficient constants are A = 7.6 and B = 0.7. The same expression
also fits the NER function of the XY model, but with the dynamic exponent z = 6.8 and a
constant A = 3.3. The NER functions of the Binder parameter are shown in figure 7(b). If
we multiply the result of the Ising model by a factor 2.2, it is indistinguishable from the curve
of the Heisenberg model.
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4. Summary

By applying the nonequilibrium relaxation method it has been made clear that the ±J models in
three dimensions undergo finite-temperature spin-glass transitions. There is a possibility that
these models belong to the same weak universality class with the ratio of the critical exponents
γ /ν ∼ 2.4. We compare our results with other numerical results and the experimental results
in table 3. They agree well within the numerical errors. Since the error bars are rather large at
present, further efforts to improve precision are necessary in order to prove weak universality.

The spin-glass transition of the Heisenberg model is found to be very similar to that of the
Ising model. The relaxation functions of χsg and gsg and values of the ratio of the exponents
γ /ν and the dynamic exponent z are consistent between the two models. If one considers
that the spin-glass transition occurs in the Ising model, it may be thought that it occurs in the
Heisenberg model to the same accuracy. Only the dynamic exponent of the XY model differs
from the other models. Spin-glass transition and weak universality in models with Gaussian
bond distributions is a problem to be checked in future work. The type of bond distribution
may be important.

The NER method has been shown to be particularly effective in the spin-glass study.
Critical behaviour is observed from very early time steps even though it takes a very long time
to achieve the equilibrium states. What is long is the nonequilibrium relaxation process after a
short initial relaxation before the final equilibrium relaxation. This long process is discarded
in conventional simulations, while it is utilized in the NER method. This is one reason why
the NER method is advantageous in this system. Applications to various complex systems
with slow dynamics are fruitful [33, 34].

Acknowledgments

The authors would like to thank Professor Fumitaka Matsubara for guiding them in the spin-
glass study and for their fruitful discussions. The author TN also thanks Professor Nobuyasu
Ito and Professor Yasumasa Kanada for providing him with a fast random number generator
RNDTIK. Computations were partly done at the Supercomputer Center, ISSP, The University
of Tokyo.

References

[1] For a review see Binder K and Young A P 1986 Rev. Mod. Phys. 58 801
Mydosh J A 1993 Spin Glasses (London: Taylor & Francis)
Young A P (ed) 1997 Spin Glasses and Random Fields (Singapore: World Scientific)

[2] McMillan W L 1985 Phys. Rev. B 31 342
[3] Olive J A, Young A P and Sherrington D 1986 Phys. Rev. B 34 6341
[4] Kawamura H 1992 Phys. Rev. Lett. 68 3785
[5] Hukushima K and Kawamura H 2000 Phys. Rev. E 61 R1008
[6] Matsubara F, Endoh S and Shirakura T 2000 J. Phys. Soc. Japan 69 1927
[7] Endoh S, Matsubara F and Shirakura T 2001 J. Phys. Soc. Japan 70 1543
[8] Matsubara F, Shirakura T and Endoh S 2001 Phys. Rev. B 64 092412

Matsubara F, Shirakura T and Endoh S 2000 Preprint cond-mat/0011218
[9] Sadic A and Binder K 1984 J. Stat. Phys. 35 517

[10] Stauffer D 1992 Physica A 186 197
[11] Ito N 1993 Physica A 196 591
[12] Ito N and Ozeki Y 1999 Int. J. Mod. Phys. 10 1495
[13] Huse D A 1989 Phys. Rev. B 40 304
[14] Blundell R E, Humayun K and Bray A J 1992 J. Phys. A: Math. Gen. 25 L733



10906 T Nakamura et al

[15] Ozeki Y and Ito N 2001 Phys. Rev. B 64 024416
[16] Ozeki Y, Ogawa K and Ito N 2003 Phys. Rev. E 67 026702
[17] Nakamura T and Endoh S 2002 J. Phys. Soc. Japan 71 2113
[18] Vincent E and Hammann J 1987 J. Phys. C: Solid State Phys. 20 2659
[19] Ogielski A T 1985 Phys. Rev. B 32 7384
[20] Bhatt R N and Young A P 1985 Phys. Rev. Lett. 54 924
[21] Kawashima N and Young A P 1996 Phys. Rev. B 53 R484
[22] Palassini M and Caracciolo S 1999 Phys. Rev. Lett. 82 5128
[23] Mari P O and Campbell I A 2002 Phys. Rev. B 65 184409
[24] Gunnarsson K, Svedlindh P, Nordblad P, Lundgren L, Aruga H and Ito A 1991 Phys. Rev. B 43 8199
[25] Morris B W, Colborne S G, Moore M A, Bray A J and Canisius J 1986 J. Phys. C: Solid State Phys. 19 1157
[26] Jain S and Young A P 1986 J. Phys. C: Solid State Phys. 19 3913
[27] Kawamura H and Tanemura M 1987 Phys. Rev. B 36 7177
[28] Kawamura H and Tanemura M 1991 J. Phys. Soc. Japan 60 608
[29] Kawamura H and Li M S 2001 Phys. Rev. Lett. 87 187204
[30] Maucourt J and Grempel D R 1998 Phys. Rev. Lett. 80 770
[31] Akino N and Kosterlitz J M 2002 Phys. Rev. B 66 054536
[32] Lee L W and Young A P 2003 Phys. Rev. Lett. 90 227203
[33] Shirahata T and Nakamura T 2002 Phys. Rev. B 65 024402
[34] Nakamura T 2003 J. Phys. Soc. Japan 72 789


